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Abstract
In this paper the Casimir effect arising from the case of Dirichlet boundary
conditions confining the massless scalar field at finite temperature is reexamined
for a (D − 1)-dimensional rectangular cavity with equal or unequal finite p
edges and different spacetime dimensions D. We derive an expression for the
Casimir energy for a p-dimensional cavity at nonzero temperature. We show
that the sign of the Casimir energy remains positive irrespective of whether
p is odd or even if the thermal corrections to the standard Casimir effect are
sufficiently large. Furthermore, we also find the temperature influences on
choosing edges which lead to the Casimir energy being positive or negative.

PACS numbers: 04.62.+v, 03.65.Ge

1. Introduction

The Casimir effect is a fundamental aspect of quantum field theory in confined geometries.
Historically, the effect of boundaries was investigated by Casimir [1]. The vacuum fluctuations
as embodied in the Casimir effect have also been a subject of extensive research [2]. It has
been showed that the Casimir effect is essentially a polarization of the vacuum of quantized
fields which arises because of a change in the spectrum.

The Casimir effect as a strong function of geometry has been researched both theoretically
and experimentally for a long time [4,5] and for a rectangular cavity. The sign of the Casimir
energy depends on the spacetime dimensions and configuration of boundaries that confine the
field. When a massless scalar field is quantized inside a box with p edges of equal length
L1 = L2 = · · · = Lp = L in a D-dimensional spacetime and the characteristic length of
D−1−p edges satisfies λ� L, the sign of the Casimir energyEDp is always negative [3]. It is
very interesting that for Dirichlet boundary conditions the sign ofEDp depends on whether p is
even or odd [4]. In an earlier paper we discussed the Casimir effect of a massless scalar field for
a rectangular cavity with unequal edges and Dirichlet boundary conditions in aD-dimensional
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Minkowski spacetime [5]. We showed that the sign of the Casimir energy depends on ratios of
edges for the p-dimensional cavity with unequal edges instead of only depending on whether
p is odd or even.

Quantum field theory at finite temperature shares many of these effects. It is necessary
to discuss the Casimir energy under a nonzero temperature environment [3]. Recently, the
experimental observation of the Casimir effect was greatly improved [5, 8, 9]. Thermal
corrections to the standard Casimir effect cannot be neglected in many cases [3, 10–13]. In
this paper we discuss an important issue of the Casimir effect at finite temperature in detail.
We find that there are more and greater differences between the results in the zero-temperature
case and the nonzero ones.

The description of the Casimir effect for a rectangular cavity with equal or unequal edges
will change at different temperatures. Here we consider the thermal corrections to the Casimir
effect for a rectangular cavity by means of finite-temperature field theories [6, 7, 13]. By
regularizing the Casimir energy density, we find that the thermal influence cannot be omitted
for sufficiently high temperatures. First we derive the Casimir energy for a p-dimensional
cavity at finite temperature in D-dimensional spacetime. Secondly we discuss the p = 2, 3
cases carefully. Finally the conclusions are listed.

2. The Casimir energy at finite temperature in a D-dimensional Minkowski spacetime

It is convenient to describe the scalar fields in thermal equilibrium by making use of the
imaginary time formalism. First we introduce a partition function for a system [3, 6, 7, 13]

Z = N
∫

periodic
Dφ exp

[∫ β

0
dτ
∫

d3x L(φ, ∂Eφ)

]
(1)

where L is the Lagrangian density for the system under consideration, N a constant and
‘periodic’ means,

φ(0, ⇀x) = φ(τ,⇀x) (2)

where β = 1
T

is the inverse of the temperature. The system, a Hermitian massless scalar field,
can be described through the massless Klein–Gordon equation [4, 5]

(∂2
t − ∂2

i )φ(t, x
a, xT ) = 0 (3)

where i = 1, 2, . . . , D − 1; a = 1, 2, . . . , p; T = p + 1, . . . , D − 1. The field satisfying the
Dirichlet boundary conditions φ(t, xa, xT )|∂� = 0 is confined to the interior of a (D − 1)-
dimensional rectangular cavity�with p edges of finite lengthsL1, L2, . . . , Lp andD−1−p
edges with characteristic lengths of order λ� La . The modes of the massless scalar field,

φ{n} = sin
n1πx1

L1
sin
n2πx2

L2
· · · sin

npπxp

Lp
eikT ·xT e−iωkt (4)

ω2
k = k2

T +

(
n1π

L1

)2

+

(
n2π

L2

)2

+ · · · +

(
npπ

Lp

)2

+

(
2nπ

β

)2

(5)

where {n} denotes short-hand notation for n1, n2, . . . , np, and na is a positive integer. The
generalized zeta function can be written as

ζ(s; −∂E) = Tr(−∂E)−s (6)

where

∂E = ∂2

∂τ 2
+ ∇2 (7)

and

τ = it. (8)
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According to the solutions to the equations of motion and equation (6), the generalized zeta
function reads

ζ(s; −∂E) =
∫

dD−p−1k

∞∑
{n}=1

∞∑
n=−∞

[
k2
T +

(
n1π

L1

)2

+

(
n2π

L2

)2

+ · · · +

(
npπ

Lp

)2

+

(
2nπ

β

)2 ]−s
. (9)

Following [5, 13], the function can be expressed in terms of Epstein zeta functions,

ζ(s; −∂E) = π
D−p−1

2 �
(
s − D−p−1

2

)
�(s)

Ep

(
2s −D + p + 1

2
; π

2

L2
1

,
π2

L2
2

, . . . ,
π2

L2
p

)

+
2π

D−p−1
2 �

(
s − D−p−1

2

)
� (s)

×Ep+1

(
2s −D + p + 1

2
; π

2

L2
1

,
π2

L2
2

, . . . ,
π2

L2
p

,
4π2

β2

)
(10)

where the Epstein zeta function is defined as

EN(s; a1, a2, . . . , aN) =
∞∑

n1,n2,...,nN=1

( N∑
j=1

ajn
2
j

)−s
(11)

the total energy density of the system with thermal corrections is

εDp = − ∂

∂β

(
∂ζ (s; −∂E)

∂s

∣∣∣∣
s=0

)
= −π

D−p−2
2

2
�

(
p −D

2

)
Ep

(
p −D

2
; π

2

L2
1

,
π2

L2
2

, . . . ,
π2

L2
p

)

+ 2
D−p+1

2 π
D−p−1

2

∞∑
k=0

8−k

k!

D − p − 1 + 2k

2
β− D−p+1+2k

2

×
k∏
j=1

[(p −D)2 − (2j − 1)2]
∞∑

m,n1,n2,...,np=1

m
p−D−2k−1

2

×
(
π2

L2
1

n2
1 +
π2

L2
2

n2
2 + · · · +

π2

L2
p

n2
p

)D−p−1−2k
4

× exp


−βm

(
π2

L2
1

n2
1 +
π2

L2
2

n2
2 + · · · +

π2

L2
p

n2
p

) 1
2




+ 2
D−p+1

2 π
D−p−1

2

∞∑
k=0

8−k

k!

(
1

β

)D−p−1+2k
2 k∏

j=1

[(p −D)2 − (2j − 1)2]

×
∞∑

m,n1,n2,...,np=1

m
p−D−2k+1

2

(
π2

L2
1

n2
1 +
π2

L2
2

n2
2 + · · · +

π2

L2
p

n2
p

)D−p+1−2k
4

× exp


−βm

(
π2

L2
1

n2
1 +
π2

L2
2

n2
2 + · · · +

π2

L2
p

n2
p

) 1
2


. (12)

The last two terms are thermal corrections. Let T → 0 or β → ∞, then equation (12) becomes
the same as that of [5].
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3. The sign of the Casimir energy density of a p = 2 cavity at finite temperature

First we consider the p = 2 case in which the field is confined to the interior of a (D − 1)-
dimensional rectangular cavity with two edges of finite lengths L1, L2 and D − 3 edges with
characteristic lengths of order λ � L1, L2. The Casimir energies for the fields confined in a
rectangular cavity with equal or unequal edges at zero temperature have been obtained [4, 5].
Here we study the influence of the thermal corrections on the Casimir effect. According to
equation (12) the same case at finite temperature can be described as

εDp=2 = −1

2
π

D−4
2 �

(
2 −D

2

)
E2

(
2 −D

2
; π

2

L2
1

,
π2

L2
2

)
+ !1(2,D, β) +!2(2,D, β) (13)

where

!1(2,D, β) = 2
D−1

2 π
D−3

2

∞∑
k=0

8−k

k!

D + 2k − 3

2

(
1

β

)D+2k−1
2 k∏

j=1

[(2 −D)2 − (2j − 1)2]

×
∞∑

m,n1,n2=1

m− D+2k−1
2

(
π2

L2
1

n2
1 +
π2

L2
2

n2
2

)D−2k−3
4

exp

[
−βm

(
π2

L2
1

n2
1 +
π2

L2
2

n2
2

) 1
2
]

(14)

!2(2,D, β) = 2
D−1

2 π
D−3

2

∞∑
k=0

8−k

k!

(
1

β

) D+2k−3
2 k∏

j=1

[(2 −D)2 − (2j − 1)2]

×
∞∑

m,n1,n2=1

m− D+2k−3
2

(
π2

L2
1

n2
1 +
π2

L2
2

n2
2

)D−2k−1
4

exp

[
−βm

(
π2

L2
1

n2
1 +
π2

L2
2

n2
2

) 1
2
]
.

(15)

When the temperature is equal to zero, it was shown that the energy density is positive for
D � 6 and becomes negative for integer valuesD � 7 in the case of an equal-edge cavity [4].
Let us start to discuss the topic at nonzero temperature. For the L1 = L2 = L case, having
introduced a dimensionless variable ξ = L

πβ
named the scaled temperature and regularized the

expression, we obtain the Casimir energy

εDp=2 = 1

4
π

D−5
2

(
1

L

)D−2

�

(
D − 1

2

)
ζ(D − 1)− 1

4
π

D−6
2

(
1

L

)D−2

�

(
D

2

)
ζ(D)

−πD−3

(
1

L

)D−2 ∞∑
n1,n2=1

(
n2

n1

)D−1
2

KD−1
2
(2πn1n2) +!1(2,D, ξ) +!2(2,D, ξ)

(16)

where

!1(2,D, ξ) = 2
D−1

2
π

3D−7
2

LD−2
ξ
D−1

2

∞∑
k=0

8−k

k!

D + 2k − 3

2
ξk

k∏
j=1

[(2 −D)2 − (2j − 1)2]

×
∞∑

m,n1,n2=1

m
1−D−2k

2 (n2
1 + n2

2)
D−2k−3

4 exp

[
−m
ξ
(n2

1 + n2
2)

1
2

]
(17)

!2(2,D, ξ) = 2
D−1

2
π

3D−7
2

LD−2
ξ
D−3

2

∞∑
k=0

8−k

k!
ξk

k∏
j=1

[(2 −D)2 − (2j − 1)2]

×
∞∑

m,n1,n2=1

m
3−D−2k

2 (n2
1 + n2

2)
D−2k−1

4 exp

[
−m
ξ
(n2

1 + n2
2)

1
2

]
. (18)
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Figure 1. The solid, dot, dashed and dot–dashed curves of the Casimir energy density as functions
of scaled temperature ξ = L

πβ
in D-dimensional spacetime for D = 3, 4, 5, 6 respectively.

The results of the converging series can be calculated efficiently with the help of the
Macdonald’s function expression

Kν(z) =
√
π

2z
e−z

∞∑
k=0

1

k!

1

(8z)k

k∏
j=1

[4ν2 − (2j − 1)2]. (19)

The terms denoted as!1(2, D, ξ) and!2(2, D, ξ) respectively, converge very quickly owing
to the rapid exponential convergence and only the first several summands need to be taken into
account according to the numerical calculation. The numerical calculations for the energy
density lead to the data presented in figures 1 and 2 which show the Casimir energy as an
increasing function of the scaled temperature for p = 2 and D = 3, 4, . . . , 9, where we
choose L as the unit length. The special scaled temperatures ξ0 for spacetimes with different
dimensions can also be calculated from equation (16). In the cases of D � 7, the Casimir
energy will become positive if the scaled temperatures are chosen as ξ > ξ0, and now the
values of ξ0 for spacetimes withD = 3, 4, . . . , 9 are listed in table 1. It is important that there
exists no particular critical value of spacetime dimension Dc in the case of equal edges if the
temperature is large enough.

Secondly we consider the cavity with the unequal edges case at finite temperature. We
introduce another dimensionless variableµD = L2

L1
and setL1 to unity. Having regularized and

solved equations (13)–(15), by means of the Mellin transformation, we obtain the relations
between µ0

D and temperature, with µ0
D growing as scaled temperature increases for some

spacetime as shown in figure 3. In a D-dimensional spacetime at finite temperature, the
Casimir energy density will be negative if L2

L1
> µ0

D , and if L2
L1
< µ0

D , the energy density will
remain positive.
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Figure 2. The solid, dot and dashed curves of the Casimir energy density as functions of scaled
temperature ξ = L

πβ
in a D-dimensional spacetime for D = 7, 8, 9 respectively.
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Figure 3. The solid, dot, dashed and dot–dashed curves of the special ratio of two edges of a
p = 2 cavity µ0

D as a function of scaled temperature ξ = L
πβ

in D-dimensional spacetime for
D = 3, 4, 5, 6 respectively.

4. The sign of the Casimir energy density of a p = 3 cavity at finite temperature

When the number of finite and equal edges of a hypercube is odd and the temperature is equal to
zero, it has been analytically shown that εDp < 0 for anyD [4]. Here we discuss the question of
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Table 1. The special scaled temperatures ξ0 for massless scalar fields satisfying Dirichlet boundary
conditions inside a cavity with two equal edges at finite temperature in aD-dimensional spacetime.

D ξ0

7 0.136
8 0.148
9 0.15

10 0.15
11 0.15
12 0.15
13 0.15

Table 2. The special scaled temperatures ξ0 for massless scalar fields satisfying Dirichlet boundary
conditions inside a cavity with three equal edges at finite temperature in aD-dimensional spacetime.

D ξ0

4 0.277
5 0.213
6 0.184
7 0.169
8 0.161
9 0.157

10 0.155
11 0.154

whether the Casimir energy for odd-number edges with nonzero temperature gives rise to a
positive or a negative sign. For simplicity, we take p = 3 in equation (12)

εDp=3 = −1

2
π

D−5
2 �

(
3 −D

2

)
E3

(
3 −D

2
; π

2

L2
1

,
π2

L2
2

,
π2

L2
3

)

+ 2
D−2

2 π
D−4

2

∞∑
k=0

8−k

k!

D − 4 + 2k

2
β− D−2+2k

2

k∏
j=1

[(3 −D)2 − (2j − 1)2]

×
∞∑

m,n1,n2,n3=1

m
2−D−2k

2

(
π2

L2
1

n2
1 +
π2

L2
2

n2
2 +
π2

L2
3

n2
3

)D−4−2k
4

× exp

[
−βm

(
π2

L2
1

n2
1 +
π2

L2
2

n2
2 +
π2

L2
3

n2
3

) 1
2
]

+2
D−2

2 π
D−4

2

∞∑
k=0

8−k

k!

(
1

β

) D−4+2k
2 k∏

j=1

[(3 −D)2 − (2j − 1)2]

×
∞∑

m,n1,n2,n3=1

m
4−D−2k

2

(
π2

L2
1

n2
1 +
π2

L2
2

n2
2 +
π2

L2
3

n2
3

)D−2k−2
4

× exp

[
−βm

(
π2

L2
1

n2
1 +
π2

L2
2

n2
2 +
π2

L2
3

n2
3

) 1
2
]
. (20)

By means of the Mellin transform and substituting ξ = L
πβ

and L1 = L2 = L3 = L into
equation (20), we obtain the special scaled temperatures for different dimensions. The last
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two terms in equation (20) also converge quickly, similar to equation (16). Some special scaled
temperatures ξ0 are listed in table 2. The Casimir energy is positive for ξ > ξ0 and negative
for ξ < ξ0. It has been shown that the Casimir energy can also become positive for the p = 3
odd-number-edged hypercube at a high enough temperature.

5. Conclusion

Here we have discussed the massless scalar field at finite temperature in a rectangular cavity.
We derive the expression for the Casimir energy with thermal corrections for a p-dimensional
cavity in aD-dimensional spacetime. Having dealt with the p = 2, 3 cases carefully, we show
that the thermal corrections cannot be omitted if the temperature is large enough. For a p = 2
equal-edge cavity, although the dimensionD � 7, the Casimir energy will become positive in
aD-dimensional spacetime if the temperature is larger than a special value. We also show the
relation between the ratio of two edges and temperature for an unequal-edge cavity. For the
p = 3 equal-edge cavity, it is interesting that the Casimir energy can also change to positive
if the temperature is sufficiently high.
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